Core-Collapse Supernova Searches: how we search, searches conducted and challenges

Marek Szczepańczyk

together with Sergey Klimenko, Nicolas Leroy, Erik Katsavounidis, Tony Mezzacappa

SN Workshop
Pasadena, 2017.04.17-18
Core-Collapse Supernova (CCSN)

- Burning of the star:
 \[\text{H} \rightarrow \text{He} \rightarrow \ldots \rightarrow \text{Fe} \]

- Before collapse: Fe core of size 1000-2000km
 After collapse: “nucleus” core of size 20-30km

- Energy available \(\sim 300 \text{B} \) (1Bethe = 0.15 \(M_{\text{Sun}} c^2 \))
 Energy observed \(\sim 3-10 \text{B} \)

- 99% of explosion energy escapes with neutrinos!

Janka+12
CCSN Rate

- CCSN Rate
 - \(\sim 1 \text{ SN/s in Universe} \)
 - \(\sim 1 \text{ SN/day discovered} \)
 - \(\sim 4 \text{ SN/year up to 20Mpc} \)
 - \(\sim 2 \text{ SN/century (?) in Milky Way} \)

- \(\sim 20\% \) of all SN are thermonuclear, Type Ia
 - \(\sim 80\% \) of all SN are CCSN

- Optically observed supernovae
 - \(\sim 25\text{Mpc during O1-O2:} \)
 - SN 2015as, SN 2016B, SN 2016C,
 - SN 2016X, SN 2017aym

Gill et al. 2017 (in preparation), see also the poster
CCSN waveform example of neutrino driven explosion

- Broadband and long duration signal
- Strong high frequency component
- Non deterministic waveforms

Increasing with time peak frequency due to PNS g-mode oscillation

Low frequency sloshing mode instability, SASI
Bursts searches

- Look for excess power TF patterns consistent in different detectors
- E_c – coherent energy (>0 for signal)
- E_n – residual energy after reconstructed signal is subtracted

$$c_c = \frac{E_c}{(|E_c| + E_n)}$$

$\text{http://arxiv.org/abs/1602.03844}$

$C_c > 0.7$

arXiv:1602.03844
CCSN Triggered Searches

- **On-source window** – period that we think contains GW, derived from optical or neutrino observations. Timescales:
 - Neutrino triggered search, seconds to minutes
 - Optically triggered search, hours to few days
- **Sky location** – usage of skymask
- **Distance** – used currently to constrain the models
Evolution of sensitivity in the advanced detectors

- We already obtain a gain of a factor 4 around 500 Hz
- We hope to reach to a factor 10 @ 500 Hz in total at design sensitivity
Possible scenario

- Sensitivity will improve with commissioning time
- New detectors will join the network in the next years:
 - Virgo we hope in the next months
 - KAGRA at beginning of the next decade
 - LIGO-India few years later
A First Targeted Search for Gravitational-Wave Bursts from Core-Collapse Supernovae in Data of First-Generation Laser Interferometer Detectors

Some of the SN Search challenges:
- search for non deterministic and weak waveforms,
- small SN rate in nearby universe (1-2 per century in Milky Way),
- a need for coincident data between detectors.

4 nearby (<11Mpc) supernovae considered.

Only SN 2007gr and SN 2011dh were used for detection statements.

SN 2008ax/bk were excluded from detection statements because of high False Alarm Rate.
Search Methodology described with challenges specific to SN search.

Results: detection efficiency, upper limits and model exclusion statements.

No gravitational wave candidate.

The following SN search paper for O1-O2 data is planned to be finished in spring 2018.
Backup slides
Eliminating noise events increases statistical detection significance and the sensitivity

- Antenna pattern constraints (regulators)
 - $F_+^2 + F_x^2$ small
 - $F_x \ll F_+$
- Instrumental vetoes
- Skymask – circular, ring skymask
- Selection cuts (bandwidth, duration etc.)
- Pairing cWB with other pipelines (e.g. BayesWave, SMEE)

\[\text{Correlation coefficient} \]

\[0 < \rho < 1 \]

Noise events → weakly correlated

Reconstructed events → strongly correlated (close to 1)
Improving search, coherent WaveBurst (cWB)
PRD 93, 042004 (2016), (arXiv:1511.05999)

Time-Frequency decomposition

Cluster selection, based on black pixel probability

Constrained Likelihood

\(x(t) \xrightarrow{\text{Wavelet Transform}} h(t) \)

Injected (black) vs reconstructed (red)
An other external triggered search: gamma-ray bursts
As you all know GRB are very good candidate for GW emission:
- short GRB with coalescence system (NSNS or NSBH)
- Long GRB with supernovae/hypernovae models

We use different search pipeline:
- Short GRB: template based analysis and coherent excess power analysis
- Long GRB: use only coherent excess power analysis

Depending of the method we choose different time window (can scan different scenari):
- Template based [-5s, 1s]
- Coherent excess power [-600s, 60s (or T90 if larger)]
Method used

- Perform analysis for each GRB independently
 - Injections with different waveforms
 - Compute maximum detectable distance with the analysis based on the injections done
- Look for loudest event after data quality cuts applied and compute its false alarm probability (FAP)
- We can then check also if the distribution of FAP for all loudest events is compatible with a null result (binomial distribution)
- You need more than 10-20 events to be meaningful

![Binomial distribution of FAP for loudest event on 31 long GRBs analyzed during the O1 run](image)
Final results

- Finally we can perform exclusion distance based on the different GRBs estimation

Exclusion distance based on the analysis of 31 long GRBs during the O1 run

Exclusion distance based on the analysis of 31 long GRBs during the O1 run
What we can learn from the burst search?
How can we improve SN searches? Network?
What specifically should we measure to characterize SN source?
Network Response

\[\bar{\xi}[i] = [\bar{f}^+_{+}[i], \bar{f}^+_{\times}[i]] \begin{bmatrix} h^+_{+}[i] \\ h^+_{\times}[i] \end{bmatrix} = f[i] \cdot h[i] \]

- **Noise scaled network antenna patterns**
 - in general time-frequency dependent
 - calculated for each TF data sample \(i \)
 characterized by noise PSD estimator \(S[i] \)

\[\bar{f}^+_{+}[i] = \frac{F_{1+}(\theta, \phi, \psi)}{\sqrt{S_1[i]}}, \ldots, \frac{F_{K+}(\theta, \phi, \psi)}{\sqrt{S_K[i]}} = |f^+| \bar{e}^+ \]

\[\bar{f}^+_{\times}[i] = \frac{F_{1\times}(\theta, \phi, \psi)}{\sqrt{S_1[i]}}, \ldots, \frac{F_{K\times}(\theta, \phi, \psi)}{\sqrt{S_K[i]}} = |f_{\times}| \bar{e}^+ \]

- **Dominant polarization wave frame:**

\[\bar{f}^+(\psi) \cdot \bar{f}^+_{\times}(\psi) = 0 \quad \left| \bar{f}^+_{\times}(\psi) \right| \geq \left| \bar{f}^+(\psi) \right| \]

Klimenko et al, PRD 72, 122002 (2005)
Network Plane

- Vectors \vec{f}_+, \vec{f}_x define network plane in the space $\{d_1, d_2, \ldots, d_K\}$
- GW response $\vec{\xi}=(\xi_1, \ldots, \xi_K)$ is always in the network plane
- Noisy response X can be outside of the network plane

$$\vec{\xi} = (\xi_1, \ldots, \xi_K)$$

$$|\vec{f}_+(\psi)| \geq |\vec{f}_x(\psi)|$$
Polargrams

- Polargrams show evolution of the response vectors in the network plane (\vec{f}_+, \vec{f}_x) (polarization state)

- Evolution of simulated GW signal with random polarization: blue – 0-phase response, red – 90-phase response (quadrature) – defined later

Vedovato, Klimenko

S.Klimenko, University of Florida
Some Magic: Dual Stream Phase Transform

- **Dual data stream:** \(x\) and \(\tilde{x}\) - quadrature
 - Quadrature data stream contains the same information as \(x\)
 - Network response can be presented as pairs of vectors \(\xi, \tilde{\xi}\)

- **Phase transform**
 - Apply phase transform to projections (don’t care about projections out of plane)
 \[
 \xi = \xi' \cos(\lambda) + \tilde{\xi}' \sin(\lambda) \\
 \tilde{\xi} = \tilde{\xi}' \cos(\lambda) - \xi' \sin(\lambda)
 \]

- **With appropriate phase transformation** the polarization pattern is revealed

Phys. Rev. D 93, no. 4, 042004 (2016)
Network Alignment

\[A = \frac{|f_\times|}{|f_+|} \]

- tells how well the second polarization is detected

- For co-aligned detectors
 \(A=0 \) – detect only one GW component
 - any incoming GW signal looks like a linearly polarized wave with fixed polarization angle
 - network can not distinguish polarization state of incoming wave

- \(A \) – fraction of total network SNR due to the second component
Capturing polarization state

- GW polarization state is captured as a pattern of sampled responses on the network plane.
- Scientific value of detected events greatly depends on the network.

\[\xi[i] = \vec{f}_+ h_+[i] + \vec{f}_x h_x[i] \]

\[|\vec{f}_+| \gg |\vec{f}_x| \]

Full network coverage is important for reconstruction of gravitational wave polarization.
How can we improve searches - constraints!

- Trivial constraints: time and sky location
- Less trivial example: fixed chirality
- Constraints based on signal TF patterns
- What characteristic signal features should we look at and measure?
Reconstructed Waveforms

burst waveform reconstruction == de-noising estimate $\xi(t)$ from network data

reconstruction can be improved by using minimal signal assumptions like chirality

S.Klimenko, University of Florida
Sky localization

- Link source to possible optical or ν counterpart