The Gravitational-wave Network: 2017-2020+

Stan Whitcomb
Supernova Workshop 2017
18 March 2017
Prospects for Localization of Gravitational Wave Transients by the Advanced LIGO and Advanced Virgo Observatories

(Submitted on 2 Apr 2013)

We present a possible observing scenario for the Advanced LIGO and Advanced Virgo gravitational wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We determine the expected sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. For concreteness, we focus primarily on gravitational-wave signals from the inspiral of binary neutron star (BNS) systems, as the source considered likely to be the most common for detection and also promising for multimessenger astronomy. We find that confident detections will likely require at least 2 detectors operating with BNS sensitive ranges of at least 100 Mpc, while ranges approaching 200 Mpc
Prospects for Localization of Gravitational Wave Transients by the Advanced LIGO and Advanced Virgo Observatories

(Submitted on 2 Apr 2013)

We present a possible observing scenario for the Advanced LIGO and Advanced Virgo gravitational wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We determine the expected sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. For concreteness, we focus primarily on gravitational-wave signals from the inspiral of binary neutron star (BNS) systems, as the source considered likely to be the most common for detection and also promising for multimessenger astronomy. We find that confident detections will likely require at least 2 detectors operating with BNS sensitive ranges of at least 100 Mpc, while ranges approaching 200 Mpc.
LIGO-Virgo Observing Plans

Advanced LIGO

Advanced Virgo

Living Rev. Relativity 19 (2016), 1
Lessons from LIGO O1

• Steep drop in false alarm rate versus size means edge of observable space is very sharp
 » Very far out on tail of noise due to need to overcome trials factor

O1 BBH Search
Lessons from LIGO O1

- Steep drop in false alarm rate versus size means edge of observable space is very sharp
 » Very far out on tail of noise due to need to overcome trials factor
- Narrow time window lowers probability of noise triggers linearly
 » Neutrino trigger would help sensitivity a lot, optical trigger not so much
Limitation of a 2-Detector Network

Limitation of a 2-Detector Network

LIGO-Virgo Network
Localization Capability:
LIGO-Virgo Working Together

Localization--Bursts

- Two different algorithms, two different waveforms
- Effect of individual detector duty factors on network effectiveness
The Global Network
Localization Capability:
LIGO-Virgo plus LIGO-India

S. Fairhurst, “Improved source localization with LIGO India”, *J. Phys.: Conf. Ser.* 484 012007

Supernova Workshop 2017
• Next iteration of “Observing Scenario” paper will include KAGRA
• VERY preliminary guesses about sensitivity in different years
• Commissioning begins in 2018
• First observing run in 2020?
Initial observations 2024?
Outside the time window for this session