Detection of Gravitational Waves from Core-Collapse Supernovae

Kiranjyot (Jasmine) Gill ERAU

SN Workshop 2017

Intuitive Parameterization of SNe

Red supergiant progenitor Stellar radius ~ (500-1000) R_☉ Shock breakout time ~ [5, 50]h

Stripped envelope progenitor - no H (no He for Type Ic Sne) Stellar radius ~ (5-10) R_{\odot}

Shock breakout time ~ [1, 35]s

	Radius	Optical Emission Timescale	Length of peak luminosity
Wolf-Rayet	~10 ¹¹ cm (5-10 R _☉)	3 seconds	10 - 20 seconds
Blue Supergiant	~ 3 x 10 ¹² cm (25-50 R _☉)	100 seconds	15 minutes
Red Supergiant	~ 3 x 10 ¹³ cm (500-1000 R _☉)	15 minutes	2 - 3 hours

Kiranjyot Gill	SN Workshop 2017	03/17/2017
----------------	------------------	------------

CCSNe Observation

From the supernova central engine

Explosion reaches surface few s-days post-bounce

EM from surface Formal MOU!

Can last years post-bounce

Kiranjyot Gill

SN Workshop 2017

03/17/2017

Understanding the Physical Landscape of CCSNe

Slowly Rotating

Rapidly Rotating

- * Prompt convection
- Neutrino-driven
 convection & SASI
- * PNS convection

 * Bounce/ringdown of millisecond PNS
 * low T/|W| instabilities

Understanding the Physical Landscape of CCSNe

- Prompt convection
- Neutrino-driven
 convection & SASI
- * PNS convection

Rapidly Rotating

 * Bounce/ringdown of millisecond PNS
 * Iow T/|W| instabilities

* Slowly rotating progenitor ~ 99% of expected CCSNe

Understanding the Physical Landscape of CCSNe

Slowly Rotating

- * Prompt convection
- Neutrino-driven
 convection & SASI
- * PNS convection

 * Bounce/ringdown of millisecond PNS
 * low T/|W| instabilities

Rapidly rotating progenitor ~ 1% of expected CCSNe
 Rotation profile is parameterized by central angular velocity and a differential rotation

Holistic Perspective

Emission Process	Duration [ms]	Spectrum [Hz]	<i>h</i> @ 1 Mpc	E _G w [M₀c²]
Rotating Collapse & Bounce	~10	~400 - 900	~5x10 ⁻²⁴ - 2x10 ⁻²²	~2x10 ⁻¹¹ - 1x10 ⁻⁷
Dynamical Shear	10 - ≳ 100	~700 - 1000	~ few x10 ⁻²³	10 ⁻⁷ (change in time/100ms)
Bar Mode	10 - ≳ 100	~1000 - 2000	~ few x10 ⁻²³ - x10 ⁻²¹	10 ⁻⁷ - 10 ⁻² (change in time/100ms)
Prompt Convection	10 - 30	~50 - 1000	~ x10 ⁻²⁵ - x10 ⁻²³	10 ⁻¹² - 10 ⁻⁹
v-driven Convection/ SASI	100 - 500	~100 - 1000	~ x10 ⁻²⁵ - x10 ⁻²³	10 ⁻¹² - 10 ⁻⁹ (change in time/100ms)
Convection in PNS	≳ 1000	~600 - 1000	~ x10 ⁻²⁵ - x10 ⁻²³	10 ⁻⁸ (change in time/100ms)
BH Formation	≲ 1 - 2	~600 - 4000	~ x10 ⁻²³ - x10 ⁻²²	~10 ⁻⁸ - 10 ⁻⁷
Aspherical Outflows	≳ 100 - 1000	~ 20	~ x10 ⁻²³ - x10 ⁻²²	≲ 1 0 ⁻¹¹
Accretion Disk Instabilities	≳ 1000	~100 - 1000	~ x10 ⁻²² - x10 ⁻¹⁹	~10 ⁻⁵ - 10 ⁻¹

Please refer to work & talks given by Yakunin & Mezzacappa!

Kiranivot Cill	SNI Workshop 2017	03/17/2017
Kilailjyöt Gill	SIN VVOIKSHOP 2017	03/17/2017

The Search for GWs from CCSNe Nearby CCSNe

Detection of CCSNe limited to Milky Way (neutrino-driven convection) and LMC (rotating core-collapse).

Model	Milky Way HLV 2019 d ^{50%} [kpc]	LMC HLV 2019 d ^{50%} [kpc]				
Convection & SASI (3D: müller, ott; 2D: yak)	2.4 - 5.5 🛹	2.5 - 7.2 样				
Bounce & ringdown of proto-NS (2D: dim)	17 - 38 🖌	18 - 50 🛹		Di	stant C	CSNe
Non-axisymmetric rotational instabilities (3D: sch)	78 - 98 🖌	90 - 120 🖌	M31 (61m) HLV 2019 d ^{50%} [Mpc]	M31 (51h) HLV 2019 d ^{50%} [Mpc]	M82 (24h1m) HLV 2019 d ^{50%} [Mpc]	M82 (74h) HLV 2019 d ^{50%} [Mpc]
past results a with algorith	are shown nms that	Long-lasting bar mode instability (longbar)	2.3 - 25 🖌	1.2 - 14 🤟	1.0 - 9.7 📈	0.7 - 8.3 📈
haven't unde improve	rgone O2 ment	Accretion disk fragmentation (piro)	2.4 - 35 🖌	1.6 - 22 🖌	1.3 - 16 🛹	1.3 - 15 🛹
4] Gossan et al. 2016	6	-				
Kiranivot Gill		SN Workshop 201	7	03	/17/2017	

Extreme post-corecollapse GW emission models detectable out to ~10-15 Mpc

[3] Gill et al. 2017

Kiranjyot Gill

aLIGO CCSNe Detection Distance

Waveform	cWB Distance (Mpc) @ 50% hrss	FC Distance (Mpc)	GRB Distance (Mpc)
LB1	0.732	5	5
LB2	2.252	5	5
LB3	0.191	5	5
LB4	3.292	5	5
LB5	11.511	15	15
Piro1	0.891	5	5
Piro2	4.409	15	15
Piro3	2.445	5	5
Piro4	12.569	15	15

3G CCSNe Detection Distance

Waveform	cWB Distance (Mpc) @ 50% hrss	FC Distance (Mpc)	GRB Distance (Mpc)
Muller1-N20-2	0.38	1	5
Muller1-L15-3	0.47	1	1
Muller1-W15-4	0.99	N/A	1
Yak1	0.002	0.5	0.1
Yak2	0.001	0.5	0.5
Yak3	0.002	0.1	0.1
Yak4	0.004	0.5	0.5

SN Workshop 2017

03/17/2017

collapse GW emission models detectable out to ~10-15 Mpc

[3] Gill et al. 2017

Kiranjyot Gill

aLIGO CCSNe Detection Distance

Waveform	cWB Distance (Mpc) @ 50% hrss	FC Distance (Mpc)	GRB Distance (Mpc)	
LB1	0.732	5	5	
LB2	2.252	Introdu	icing a	
LB3	0.191			
LB4	3.292	COIIECTIVE		
LB5	11.511	CCSNe		
Piro1	0.891	population		
Piro2	4.409	methodology		
Piro3	2.445 L			
Piro4	12.569	15	15	

3G CCSNe Detection Distance

Waveform	cWB Distance (Mpc) @ 50% hrss	FC Distance (Mpc)	GRB Distance (Mpc)	
Muller1-	0.38	Introdu		
Muller1-L15-3	0.47	Introducing a		
Muller1-	0.99	collective		
Yak1	0.002	CCSNe		
Yak2	0.001	population		
Yak3	0.002	methodoloav!		
Yak4	0.004 ^L	0.5	0.5	

SN Workshop 2017

03/17/2017

CCSNe Rate within 20 Mpc

The Search for GWs from CCSNe Externally-triggered Searches

- Galactic or Large Magellanic Cloud SN will have coincident neutrino signal from SuperKamiokande, LVD, Borexino
- Distant galaxy SN (e.g. M31, M82) will have coincident EM signal from e.g. ASAS-SN dependent on progenitor star radius, shock velocity, and observation cadence).

The Search for GWs from CCSNe Externally-triggered Searches

- Galactic or Large Magellanic Cloud SN will have coincident neutrino signal from SuperKamiokande, LVD, Borexino
- Distant galaxy SN (e.g. M31, M82) will have coincident EM signal from e.g. ASAS-SN dependent on progenitor star radius, shock velocity, and observation cadence).

LSC-Virgo Outlook?

no deterministic waveform models for GW emission from core collapse = conduct searches over astrophysically motivated time period where we expect to find GW - neutrino or EM observations.

Kiranjyot Gill

SN Workshop 2017

The Search for GWs from CCSNe Externally-triggered Searches

* Ga	Talk covering "Science Goals:
Su	Algorithmic Developments
* Dis	within LVC-SN Group" will
coi de	expand on the LSC-Virgo
vel	outlook flavor!

no deterministic waveform models for GW emission from core collapse = conduct searches over astrophysically motivated time period where we expect to find GW - neutrino or EM observations.

Kiranjyot Gill

SN Workshop 2017

