Scintillation detectors

Liquid hydrocarbon (C_nH_{2n}) that emits (lots of) photons when charged particles lose energy in it

Will see supernova electron antineutrinos, with good energy resolution

$$\bar{\nu}_e + p \to e^+ + n$$

Many examples worldwide of current and future detectors

Liquid argon time projection chambers

fine-grained trackers sensitive to electron neutrinos (as opposed to antineutrinos)

$$\nu_e + {}^{40}\mathrm{Ar} \to e^- + {}^{40}\mathrm{K}^*$$

The far detector for the next international long-baseline neutrino program (beam from Fermilab to SD) will be an underground liquid argon detector

Expect ~1000's of **electron neutrinos** from a Milky Way supernova

Example of supernova burst signal in 40 kton of LAr

*caveat: suppressed by oscillations

Summary of supernova neutrino detectors

-
()
$\overline{\mathbf{v}}$
¥.
()
U
$\overline{\mathbf{D}}$
Y
σ
σ
()
$\mathbf{\nabla}$

Detector	Туре	Location	Mass (kton)	Events @ 10 kpc	Status
Super-K	Water	Japan	32	8000	Running
LVD	Scintillator	Italy	1	300	Running
KamLAND	Scintillator	Japan	1	300	Running
Borexino	Scintillator	Italy	0.3	100	Running
IceCube	Long string	South Pole	(600)	(10 ⁶)	Running
Baksan	Scintillator	Russia	0.33	50	Running
HALO	Lead	Canada	0.079	20	Running
Daya Bay	Scintillator	China	0.33	100	Running
NOvA	Scintillator	USA	15	3000	Running
MicroBooNE	Liquid argon	USA	0.17	17	Running
SNO+	Scintillator	Canada	1	300	Under construction
DUNE	Liquid argon	USA	40	3000	Future
Hyper-K	Water	Japan	540	110,000	Future
JUNO	Scintillator	China	20	6000	Future
DINCU	Long string	South pole	(600)	(10 ⁶)	Future

Example signals in future large detectors

arXiv:1508.00785

Distance reach of detectors

SK will see ~1 event from Andromeda; HK will get a ~dozen

SNEWS: SuperNova Early Warning System

- Neutrinos (and GW) precede em radiation by hours or even days
- For promptness, require *coincidence* to suppress false alerts

Running smoothly for more than 10 years, automated since 2005

SNEWS: SuperNova Early Warning System

WUN2K (What You Need To Know) about the neutrino signal

Core-collapse neutrinos

-~10 second prompt burst of all flavors, few tens of MeV

Current & near future detectors:

- ~Galactic sensitivity

(SK reaches barely to Andromeda)

- sensitive mainly to the $\nu_{e}\mbox{-}bar$ component
- pointing: ~5° from SK, may do better w/ SK-Gd
- ~ms timing from IceCube, neutronization burst
- SNEWS network is waiting

Future detectors

- huge statistics: extragalactic reach
- richer flavor sensitivity (e.g. v_e in LAr!)
- multimessenger prospects

Neutrinos and Gravitational Wave Coincidences

Topics for discussion:

- improve sensitivity to sub-threshold bursts (in both directions...): realtime and offline
- joint alert?
- science from joint observation:
 - T₀ for neutrino-mass-induced kinematic delay
 - collapse and explosion phenomenology

Extras/backups

Neutrino Absolute Mass

Expect time of flight delay for massive neutrinos

$$\Delta t(m_{\nu}, E_{\nu}) \simeq 5.14 \,\mathrm{ms} \, \left(\frac{m_{\nu}}{\mathrm{eV}}\right)^2 \left(\frac{10\,\mathrm{MeV}}{E_{\nu}}\right)^2 \frac{D}{10\,\mathrm{kpc}}$$

Look for:

energy-dependent time spread
flavor-dependent delay

G. Pagliaroli et al., Astropart. Phys. 33, 287 (2010)