Gravitational Signals from Supernova What can we reconstruct?

Konstantin Yakunin Anthony Mezzacappa Department of Physics and Astronomy University of Tennessee Joint Institute for Computational Sciences Oak Ridge National Laboratory

1

3/29/2017 Workshop on Core Collapse Supernovae, Pasadena, CA

Connection between simulations and signal search

- Simulations: signal characteristics (f, A, etc); physical mechanism producing GW signals, bank of waveforms
- Signal Search: search algorithms based on the most reliable parts of waveforms, proposal of detector design to observe physical properties of supernovae via GW signals

Sources of Gravitational Waves

2D Mode

Two main types of signals

Gravitational Wave Signals: Phenomenology

B12-WH07

3/29/2017

Yakunin et al. 2015 PRD **92** 084040

Gravitational Wave Signals:2D

Results obtained with the CHIMERA GR multiphysics supernova code with state-of-the-art neutrino interactions.

3/29/2017

Yakunin et al. 2015 PRD 92 084040

Injected vs Reconstructed B20 Waveform

How can simulations help data analysis? example by M. Szczpanczyk

Gravitational Wave Signals:3D

Comparisons use same time window (from 3D) and temporal resolution (from 2D).

Results obtained with the CHIMERA GR multiphysics supernova code with state-of-the-art neutrino interactions.

3/29/2017

Yakunin et al. 2017, arXiv:1701.07325v1

Gravitational Wave Energy: 2D and 3D

Yakunin et al. 2017, arXiv:1701.07325v1

Non-rotating progenitors

3/29/2017

Rotating progenitors

12

Slow-rotating and neutrino-driven explosion 100 B12-WH07 80 A possible 60 bounce signal 40 20 0 -20 -40 -60 -80 -100 100 300 200 400 500 600 0 $E_{\rm GW}$ [Mc²] **Duration** (ms) f_{peak} [Hz] Typical *h* at 10 kpc **Emission process** $3x10^{-21}$ ~10-8 Core Bounce 10 300 ~10-12 200 0.3x10-21 Prompt convection 50 $2x10^{-9} \Lambda t/100 ms$ SASI/ND convection 700 1×10^{-21} 450 0.7x10⁻²¹ 2x10⁻⁹ Explosion >400800

Conclusions and Outlook

- Simulations help to improve data analysis and increase chances for detection!
 - We are able to perform realistic 3D simulations and produce reliable waveforms.
 - Waveforms from 2D simulations have similar characteristics as 3D ones.
 Thus, 2D simulations can be used to create a bank of waveforms. Now, even realistic 2D simulations are computationally inexpensive.
 - It would be good to summarize the main characteristics of GW signals into a table in any publication that presents new waveforms
 - To produce more realistic waveforms we have to perform realistic CCSN simulations with slow-rotating progenitor (bounce signal + neutrino-driven explosion signal)

CHIMERA Collaboration

THE UNIVERSITY OF TENNESSEE

> Casanova Chu Endeve Hix Landfield Lentz Lingerfelt Messer Mezzacappa Roberts Yakunin

3/29/2017

NC STATE UNIVERSITY

Blondin Mauney

Fau

Bruenn Marronetti

Harris

