Equation of State Dependence of Gravitational Waves from Core-Collapse Supernovae

Sherwood Richers

California Institute of Technology NSF Blue Waters Graduate Fellow

Christian Ott, Ernazar Abdikamalov Evan O'Connor, Chris Sullivan

Rotating Core-Collapse

SN-GRB Association

- Hypernovae
- Coincident GRB + SN Ic/bl
- Young star-forming regions

Interior rotation is still poorly understood.

Sherwood Richers

Gravitational Waves from Core Collapse

Andresen et al. 2016

Gravitational Waves from Rapidly Rotating Core Collapse

Many Available Equations of State

Parameter Study Methods

1824 Simulations

18 equations of state, 98 rotation profiles

2D Simulations (CoCoNuT)

- Conformally flat GRHD
- Neutrino Leakage (Dimmelmeier+02,05)

Deleptonization (GR1D)

- Spherically symmetric GRHD
- M1 neutrino transport (O'Connor 2015)

GW Observables

Bounce signal Δh_+ in time domain

Peak frequency f_{peak} in frequency domain.

Bounce Amplitude

(Dimmelmeier et al. 2008)

EOS and rotation influence $M_{\rm IC,b}$.

Rotation increases deformation.

Peak Frequency

Peak Frequency

Now, let's measure rotation differently.

Inertial Mode Character

High rotation rates suppress equatorial fluctuations.

Sherwood Richers

Can We Constrain the EOS?

Probably not. Need detailed treatment of neutrino transport and electron capture rates.

Take Away

- A universal relations is obeyed by all EOS and rotation profiles.
- We quantify uncertainties in GW observables due to nuclear physics.
- GWs are sensitive to EOS properties at *both* **subnuclear** and **supernuclear** densities.
- Detailed **neutrino transport** and **electron capture rates** during collapse are required for reliable GW predictions.

arXiv:1701.02752 srichers@tapir.caltech.edu www.tapir.caltech.edu/~srichers

Fourier Analysis

18 Equations of State

$$E(x,\beta) = -E_0 + \frac{K}{18}x^2 + K'x^3 + \dots + S_2(x)\beta^2 + S_4(x)\beta^4 + \dots$$

Peak Frequency

Correlations

 $\Omega_{\max} \geq \sqrt{G} \bar{
ho}_{c}$

14/14

Can We Constrain the EOS?

0.00

0.05

0.10

T/|W|

0.15

biases in electron capture rates.

0.20

Can We Constrain the EOS?

High SNR at 10 kpc. Must be in the Milky Way or Magellanic Clouds. **Large mismatch between EOS** due to pre- *and* post-collapse physics.

Looks great, right?