

Toward 3G detectors, input from SNe science an outsider's view

Salvatore Vitale

MIT

SNe-NR workshop, Caltech, March 19 2017

Proposed 3G detectors

S. Vitale

• Einstein Telescope

21GO

- 10 Km long arms
- Triangular shape
- Underground
- Sensitivity down to few Hz

- Cosmic Explorer
 - 40 Km long arms
 - L shaped
 - Over ground
 - Sensitivity down to ~8Hz

Getting to a science case

- When asking for that much money (~1 B\$) there must be *good and precise* (astro)physical motivations.
- Interferometric GW detectors are delicate beasts: if you try to improve at some frequency you (typically) pay the price somewhere else
 - Trade-offs must be identified and justified (examples later)
- People *will ask* questions!
- This discussion is already quite advanced for binary black holes

Black holes everywhere!

- 3G detectors can observe BBH from most of the Universe
- Many loud signals

1G0

- Cosmological distances
- How well can BBH be characterized?

Loud and clear

- BBH detected by 3G detectors will typically be loud
- Their inclination angle distribution will be isotropic
- Most events from redshift of a few

BBH with component masses in range [6,100]M

4GO

S. Vitale

Vitale, 1610.06914, PRD Rapid Comm.

5

How many detectors do we need?

	Longitude	Latitude	Orientation	Type
L	-1.58	0.533	2.83	CE
С	1.82	0.67	1.57	CE
Ι	1.34	0.34	0.57	CE
\mathbf{E}	0.182	0.76	0.34	ET
Α	2.02	-0.55	0	CE

LIGO

Extrinsic parameters

• With 3G detectors, distance estimation is needed to measure intrinsic masses -> need more than 2 instruments!

1G0

3/17/17

Masses

- Especially at large redshifts, having more than 2 sites is important to measure component masses
- Uncertainties of [few-10]% for z<3
- Factor 1.5-2 better with 4 IFOs w.r.t. 2 IFOs

3/17/17 Vitale, Evans, 1610.06917, on press PRD

Spins

• Due to larger SNR and isotropic orbital orientation, 3G will get much better spin estimation than 2G

2GO

Vitale, Evans, 1610.06917, on press PRD

Stochastic

- The stochastic background from unresolved BBH sources will totally dominate the stochastic background form inflation.
- A significant fraction of it can be removed

Regimbau+ 1611.08943, on press PRL

Back to SNe

- What must be done:
 - Develop and consolidate a science case with 3G detectors
- When?

 ASAP. If SNe-driven requirements want to have any impact, they must be brought up and justified *now*

• So, we would like to know: to go where we want to go, where do we need to go? It's a simple information...

- So, we would like to know: to go where we want to go, where do we need to go? It's a simple information...
- If you want to the the mental hospital, I can bring you there.

- So, we would like to know: to go where we want to go, where do we need to go? It's a simple information...
- If you want to the the mental hospital, I can bring you there.

To play a role in the preparation for 3G detectors, you must have *answers* (quantitative, if possible)

Detection range

- Should have precise (in the limits of possible) numbers for
 - How far can SNe be detected at 5-sigma? (please, do not use 3sigma, great claims require great evidence!)
 - How does this number change requiring time "coincidence" with neutrinos?
 - How does this number change requiring time, and sky and proto-NS mass and radius inferred from neutrinos? (Giulia's talk)

CO

Networks and such

• SNe are rare events.

GO

- One might be everything we get
- Need to be sure we have at least two detectors continuously online (I'd argue one will not be enough for a first detection)
- If a choice is possible, would you
 - Renounce to some sensitivity in exchange for more reliability (high duty cycle)?
- Can/Should we try to keep old detectors online?
 - How much worse before they are useless

Detection is not enough

- Detection itself is *not* interesting. We know SNe exist and explode.
- We must *learn something* we don't already know

How many?

- What can we learn with 1 SNe detection at threshold?
- What can we learn with 1 *loud SNe* detection?
 - Is either of these enough to excite the broad community? (i.e. people outside of this room)
 - Is this something we can *only* do with GWs?
- What if we have a second detection?
 - Would love a progression of science vs detections
- Can you learn more if you get have more instruments? Is polarization an asset?

CO

Test of General relativity

- We all love GR but we would all love to see it violated
- Which GR violations can be tested with SNe?
 - Scalar-Tensor (Davide's talk), dispersion relation (Quentin's talk), extra polarizations
- Under which conditions we can *actually* test GR with SNe?
 - Are these tests competitive with what will be done in the next 20 years?
- Is one event (which might be the only thing we get) enough?

Frequencies

- Most people commonly associate SNe to kHz frequencies
- At this workshop, the role of low-frequency has been stressed
 - What can we learn if we start the analysis from 1Hz that we would not if we started at 10Hz?
- Not a random questions: the ET vs CE designs *do* differ in the low frequency cutoff.
- Neither side is sold to a design yet. If going to 1Hz would make SNe science dramatically better, we need to know (asap)

CO