Stochastic GW Background in the Dawn of GW Astrophysics

V. Mandic 05/07/15

Measuring the GW Energy Density

- Incoherent superposition of sources.
 - Everything contributes, astrophysical and cosmological.
 - Need not be continuous in time.
- Cross correlate detectors.
 - Isotropic
 - Anisotropic: radiometer and spherical harmonic
 - Polarization-sensitive

$$\Omega_{GW}(f) = \frac{1}{\rho_c} \frac{d\rho_{GW}(f)}{d\ln f}$$

$$Y = \int_{-T/2}^{+T/2} dt_1 \int_{-T/2}^{+T/2} dt_2 \ s_1(t_1) \ s_2(t_2) \ Q(t_2 - t_1)$$
$$Y = \int_{-\infty}^{+\infty} df \ \tilde{s}_1^*(f) \ \tilde{s}_2(f) \ \tilde{Q}(f)$$

aLIGO Sensitivity Progression

$\Omega_t(f) = \Omega_\alpha (f/100 \text{ Hz})^\alpha$

CBC Background

Stellar Core Collapse

- Many mechanisms contributing, difficult to model.
- Consider only the BH ring-down contribution.
- Could probe the extreme efficiencies (ε ~10⁻⁴-10⁻²).
- Could be more interesting depending on the mass distribution of progenitors.

Crocker et al, in preparation

Directional Searches

- Radiometer:
 - After point sources, complementary to CW searches.
- Spherical harmonic decomposition:
 - More appropriate for extended sources such as the Milky Way.

MW Simulation

Cosmology

- Cosmic (super)string model
 - Expect to explore a large part of the parameter space.

Could search for parity violation in the Early Universe, by measuring polarization of the GW background.

Many other models: Landscape

