aLIGO Improvements

What’s next for LIGO?
BNS Range is still King

• while this isn’t the only relevant metric, detection rate will continue to be our major concern and BNSs are still our most dependable source.

• if detection rate is high, emphasis will move away from BNS range
 – after the first 10s of CBC detections, we will worry more about NS EOS, etc.
Neutron Star Equation of State

• this strongly motivated science target may be within reach of an improved aLIGO
• focus is 500-5kHz
• squeezing is likely the most effective approach
 – narrowband detuning does not give any advantage over squeezing
 – changing SRM transmission has little net effect
Coating Thermal Noise

• is a serious problem for range improvements
• bigger beams are not likely a good answer
 – they will cause alignment stability
 – and would cause a long downtime to change many optics and recommission
• serious financial commitment is required on multiple fronts to address CTN through better materials
 – IBS coating material exploration
 – crystalline coating scaling
EM Follow-Up: Sky Localization

• favors high frequencies (>100Hz)
• rule of thumb: error box determined by 3rd best interferometer
• more and comparable detectors favor sky localization, but improving a single detector may be a viable approach if error box is “good enough”
 – similar to imaging vs. spectography
• frequency dependent squeezing
 – short filter cavity is good enough for SL and PE
Big Black Holes

• responding to low frequency sources is challenging due to a host of technical noises

• Newtonian noise is likely higher than expected
 – cancellation techniques have been studied
 – relatively cheap, and potentially important for reaching aLIGO sensitivity (e.g., risk mitigation)
 – work here should continue as rapidly as possible
Suspensions and Seismic OK

• in-band seismic noise is good enough for the future (may need mHz improvements for duty-cycle, scatter, upconversion, etc.)

• suspension thermal noise could be improved, but the astrophysical motivation is not high

• technical fixes to the suspensions will be needed, but should not require major redesign
 – reduce gas damping
 – allow for bounce and roll damping, ...
We are planning for the more distant future…

Gravitational wave detector with cosmological reach

Sheila Dwyer* and Daniel Sigg
LIGO Hanford Observatory, P.O. Box 159, Richland, Wash

Stefan W. Ballmer†
Department of Physics, Syracuse University, Syracuse, New

Lisa Barsotti, Nergis Mavalvala, and Matthew Evans
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
(Received 12 September 2014; published 9 April 2015)