

TEXAS TECH UNIVERSITY^{**}

Astrophysics of GW transients

Alessandra Corsi

What comes next for LIGO? May 7-8, 2015 - Silver Spring, MD

LIGO-G1500602

GW transients in the aLIGO era

- ♦ GW transients: significant uncertainty in predicted waveforms → matched filtering with bank of templates unfeasible.
- Un-modeled GW transients typically identified in detector data as excess power in the time-frequency domain.
- In the absence of detailed GW waveforms, some astrophysical guidance (including EM follow-up) is valuable (may help confirm astrophysical nature of a detection).
- Given their potential to impact the field, events like the next galactic supernova (SN), the next 980425 gamma-ray bursts (GRB; 40 Mpc), or the next SGR giant flare, should remain high priorities even after the first few in-spiral detections, but ...
- What science can we expect aLIGO to be doing between first few (inspiral) detections and the next galactic SN?
- Are aLIGO plans covering it all? Could minimal improvements and/or changes help us increase the scientific return (or perhaps make a tremendous difference if by 2020 there is no detection...)?

Burst range implies small event rates...

	Estimated	$E_{\rm GW} = 1$	$10^{-2} M_\odot c^2$			Number	% BNS Localized		
	Run	Burst Range (Mpc)		BNS Ran	ge (Mpc)	of BNS	of BNS within		
Epoch	Duration	LIGO	Virgo	LIGO	Virgo	Detections	$5{ m deg}^2$	$20{ m deg}^2$	
2015	3 months	40 - 60	- \	40 - 80	_	0.0004 - 3	_	_	
2016–17	6 months	60 – 75	20 – 40	80 – 120	20 - 60	0.006 - 20	2	5 – 12	
2017–18	9 months	75 – 90	40 - 50	120 – 170	60 - 85	0.04 - 100	1 – 2	10 - 12	
2019+	(per year)	105	40 – 80 🖌	200	65 – 130	0.2 - 200	3 – 8	8 - 28	
2022+ (India)	(per year)	105	80	200	130	0.4 - 400	17	48	

• Distance range for "standard candles": E_{GW} =0.01M $_{\odot}$ at 150 Hz.

• Distance range scale as $(E_{GW})^{1/2}$.

- ♦ Basic stellar collapse ($E_{GW} \le 10^{-7} M_{\odot}$; e.g. Ott 2008 for a review) → GW range likely galactic or near-galactic.
- Extreme (optimistic) core-collapse (possibly, rotational instabilities or core/disk fragmentation, e.g. Kobayashi & Meszaros 2003) up to E_{GW} =0.01M $_{\odot}$. With optimal orientation could reach ~150 Mpc.

Extreme and "ordinary" core-collapse...

 $R_{GRB} \approx R_{GRB.obs} (1 - \cos \theta_i)^{-1}$

 $R_{LGRB}(obs) \approx 0.3-1 (Gpc)^{-3} yr^{-1}$ (1-cosθ_j)⁻¹≈ 50 (i.e. θ_j≈ 0.2) ≈0.02-0.05/yr at ≤ 100Mpc (only ≈2% would have γ-rays, optical / radio counterpart could be accessible).

 R_{LLGRB} ≈ 250-500 (Gpc)⁻³ yr⁻¹ ≈0.25-0.5/yr at ≤100 Mpc (≥20% with 980425-like emission assuming $\theta_j \ge 0.6$). aLIGO might exclude extreme GW emission in a 3yr-run. 30% increase in aLIGO sensitivity $\rightarrow \approx (0.5-1)/yr$ (Note: from 1998 to 2015, ≈ 5 LLGRBs discovered via EM emission $\rightarrow 0.3/yr$).

Galactic core-collapse SNe: $R_{SN,MW} = 0.028 + /-0.006 \text{ yr}^{-1}$. $\approx 2x$ higher rate within local group of galaxies (≈ 1 Mpc).

Do X-ray flashes help us?

- XRFs (prompt emission at 2-20 keV) may be the missing link between hard/ luminous GRBs and LLGRBs. Perhaps dirty fireballs / lower Lorentz factor events?
- ◆ 2009-2013 MAXI (Japanese ISS Experiment) XRF sample suggests ≈3x rate of hard/luminous GRBs → ≈3x0.05/yr + 30% increase in aLIGO sensitivity → 0.3/yr (1 detection in 3yrs might be possible). EM counterpart may be accessible with future NASA missions.

XTIDE advertisement...

PI: Dave Burrows PS: Derek Fox

- Large and medium mission science highly competitive
- Multi-messenger focus can be successful for small missions
- Key science requirement: Good positions for bright bursts
 - Wide field of view
 - Real time sub-arcmin positions
- Follow-up science requirement: Multimessenger transient TOOs
 - Sensitivity over >10 deg² field
 - Rapid TOO upload capability

XTiDE

Energy injection and longer duration transients

- Magnetar rather than BH may form in explosion (e.g. GRB060218/SN2006aj, Mazzali et al. 2006). Magnetar can pump energy into the fireball (e.g. Dai & Lu 1998; Zhang & Meszaros, 2001; ..., Rowlinson et al. 2013, ...).
- Associated bar-like GW signal (e.g. Lai & Shapiro 1995, Corsi & Meszaros 2009) or magnetic deformation (e.g., ... Cutler 2002, Dall'Osso et al. 2015, Mastrano et al. 2015)?

◆ Plateaus: ≈60% of LGRBs, ≈3% of SGRBs.

- If fraction of EM representative of fraction of GRBs that form unstable magnetars, then LLGRB are the best bet in terms of event rates.
- Might first use robust techniques (few pipelines currently available) then follow-up candidates with more sensitive but more model dependent approaches (currently under study).

Secular bar-mode instability (most optimistic scenario)

Initial configuration: Maclaurin spheroid a1=a2≠a3

Riemann-S ellipsoid a1≠a2≠a3

Non-axisymmetric instabilities in rapidly rotating fluid bodies

kinetic-to-gravitational potential energy ratio, β=T/|W|
β > 0.27 : dynamical instability (possibly a burst-type signal)
β > 0.14 : l=m=2 "bar"-mode oscillations secularly unstable due to e.g. gravitational radiation (e.g. Lai & Shapiro 1995) →sequence of compressible Riemann-S ellipsoids.

Supra-massive NSs and fast radio bursts

- Falcke & Rezzolla (2013): supra-massive NS collapsing to BH could be source of FRBs. Zhang 2014 linked FRBs to short-lived supra-massive NS formed in short / long GRBs with plateaus (and possible GW counterparts).
- Real-time follow-up by Petroff et al. 2015 seems to disfavor link with LGRBs.

SGR giant flares

- Observed galactic rate of GFs (≥10⁴⁶erg): (0.005-1)×10⁻²yr⁻¹SGR⁻¹ (Svinkin et al. 2014) → ≤0.15/yr considering known SGRs/AXP population.
- Observed galactic rate of less energetic flares: (0.05–1.4)×10⁻² yr⁻¹ SGR⁻¹ x 15 SGRs (Svinkin et al. 2014) → ≤0.21/yr considering known SGRs/AXP population.

- aLIGO will go 100x deeper in energy: 3x10⁴³-3x10⁴⁹ erg.
- ◆ 2x better sensitivity (as from LIGO to eLIGO) → UL range below the max theoretical limit of $\approx 10^{49}$ erg.

- ◆ INSTRUMENT: aLIGO sensitivity improvement: 30% up to 2x → would bring LLGRB / XRF much closer to the "horizon" of the typical astronomer... (>=1 detection in 3 yrs → interesting; less than 1 detection in 3 yrs: hard to get a grant for it, hard to graduate a student... not interesting). NB: duty cycle IMPORTANT!
- DA/COMPUTATIONAL RESOURCES: The searchers for longer duration bursts may be promising, but may require additional computing resources, especially for untargeted (all-sky) approach.
- HOW THE LSC OPERATES: New ideas and EM counterparts are important (especially when GW waveforms are not well known). Perhaps small "Guest Investigator" program (say 3-yr program starting after first few in-spiral detections when LIGO data are public) may help? Could it make collaboration with EM facilities more practical, maximizing scientific return?

	local rate (ρ_0) [Gpc ⁻³ yr ⁻¹]	L _{min} [erg/s]	This work for a similar L_{min}	
Ando (2004) (1) Guetta & Piran (2006) (1) Guetta & Piran (2006) (2) Guetta & Piran (2006) (1) Nakar et al. (2006) Guetta & Stella (2009) (1) Guetta & Stella (2009) (3) Dietz (2011) Coward et al. (2012) Siellez et al. (2013) This work	$\begin{array}{c} 0.51\substack{+0.36\\-0.19}\\ 0.6\substack{+8.4\\-0.3}\\ 8\substack{+40\\-12}\\ 30\substack{+50\\-20\\40\substack{+12\\-12}\\ 1.3\\ 40\substack{-12\\-12\\1.3\\4\\1.05\substack{+0.5\\-0.9\\8\substack{+5\\-3\\2.7\substack{+0.9\\-0.9\\4.1\substack{+2.3\\-1.9}\\4.1\substack{+2.3\\-1.9\end{array}}\end{array}$	$10^{50} \\ 2 \times 10^{50} \\ 7 \times 10^{49} \\ 2 \times 10^{49} \\ 10^{49} \\ 2 \times 10^{49} \\ 0.8 \times 10^{49} \\ 4 \times 10^{50} (*) \\ 2 \times 10^{50} (*) \\ 2 \times 10^{50} (*) \\ 5 \times 10^{49} \\ \end{bmatrix}$	$\begin{array}{c} 2.1^{+1.0}_{-0.9} \\ 1.1^{+0.4}_{-0.4} \\ 3.0^{+1.6}_{-1.4} \\ 9.4^{+6.6}_{-4.9} \\ 18.9^{+15.5}_{-10.5} \\ 9.8^{+6.9}_{-5.1} \\ 23.4^{+20.0}_{-5.1} \\ 23.4^{+20.0}_{-13.2} \\ 0.5^{+0.2}_{-0.2} \\ 1.0^{+0.4}_{-0.4} \\ 1.0^{+0.4}_{-0.4} \\ 4.1^{+2.3}_{-1.9} \end{array}$	Wanderman & Piran 2015

Table 4. A comparison of different estimates of the local short bursts rate, without a beaming correction.

Notes: (*) When no luminosity low-end cutoff (erg/s) is specified we take the cutoff to be just below the least luminous burst in the given sample. (1) For a model with time delay 1/t for t > 20Myr with respect to Porciani & Madau (2001) SF2. (2) For a model with a constant rate at all redshifts. (3) For a constant time delay of 6 Gyr with respect to Porciani & Madau (2001) SF2.

Transient	$\begin{array}{c} \mathcal{R}(z=0)\\ (\mathrm{Gpc}^{-3} \mathrm{yr}^{-1}) \end{array}$	E_K (erg)	$n \pmod{(\mathrm{cm}^{-3})}$	eta_i	$ \begin{array}{c} \tau_{0.15} ^{(a)} \\ (\mathrm{d}) \end{array} $		$ \begin{array}{c} au_3 \left(c ight) \ (\mathrm{d}) \end{array} $		Ref.
LGRB, $\theta_{\rm obs} = 0.2$	0.3^{\dagger}	10^{51}	1	1	320	62	31	4	1
LGRB, $\theta_{\rm obs} = 0.4$	1^{\dagger}	10^{51}	1	1	450	90	55	12	1
LGRB, $\theta_{\rm obs} = 0.8$	4^{\dagger}	10^{51}	1	1	1900	230	150	150	1
LGRB, $\theta_{\rm obs} = 1.57$	12^{\dagger}	10^{51}	1	1	1300	620	550	590	1
Low Luminosity LGRB ("LLGRB")	500^{+}	10^{49}	1	0.8	200	43	90	110	9
SGRB, $\theta_{\rm obs} = 0.2$	5†	10^{50}	10^{-3}	1	220	110	90	110	6
SGRB, $\theta_{\rm obs} = 0.4$	15^{\dagger}	10^{50}	10^{-3}	1	360	180	160	180	6
SGRB, $\theta_{\rm obs} = 0.8$	60^{\dagger}	10^{50}	10^{-3}	1	730	480	410	480	6
SGRB, $\theta_{\rm obs} = 1.57$	185^{\dagger}	10^{50}	10^{-3}	1	1900	2200	2000	650	6
On-Axis TDE ("Sw J1644 $+57$ ")	0.01^{\ddagger}	10^{52}	0.1	1	3700	920	1040	180	2 - 4
Off-Axis TDE, spherical	1 [‡]	10^{52}	0.1	0.8	3700	900	900	900	5
NSM: prompt BH	500^{+}	3×10^{50}	0.1	0.2	4000	4000	4000	4000	7
NSM: stable remnant ("NSM-magnetar")	5†	3×10^{52}	0.1	1	2800	1300	1300	1300	8
Type Ib/c SNe ("RSN")	5000^{+}	10^{47}	1	0.2	870	120	55	1.1	10

TABLE 1EXTRAGALACTIC TRANSIENT CLASSES

NOTE. — [†]Scaled with redshift according to star formation rate (Cucciati et al. 2012). [‡] Scaled with redshift according to volumetric density of supermassive black holes (Sijacki et al. 2014). ^(a) Light curve duration at observer frequency $\nu = 0.15$ GHz. ^(b) Light curve duration at observer frequency $\nu = 3$ GHz. ^(d) Light curve duration at observer frequency $\nu = 1.3$ GHz. ^(c) Light curve duration at observer frequency $\nu = 3$ GHz. ^(d) Light curve duration at observer frequency $\nu = 150$ GHz. References: (1) van Eerten et al. 2010; (2) Zauderer et al. 2011; (3) Berger et al. 2012; (4) Zauderer et al. 2013; (5) Giannios & Metzger 2011; (6) van Eerten & MacFadyen 2011; (7) Nakar & Piran 2011; (8) Metzger & Bower 2014; (9) Barniol Duran et al. 2014; (10) Soderberg et al. 2008

	LAD	WFM
Energy band (keV)	2-30(80)	2–50
Effective area	8.5 m ² (at 6 keV)	90 cm ² (peak)
FOV	1 deg	4.1 sr
Sensitivity (5 σ)	0.1 mCrab in 100s	0.6 Crab in 1 s
		2.1 mCrab in 50 ks
Energy resolution	180–240 eV	300 eV
Timing resolution	$10\mu s$	$10\mu s$
Source location	_	0.5 – 1 arcmin

Expected EM counterparts

Optical Counterparts (TBM)

GW candidate event G21852

Aasi et al. 2014, 30 Mpc

Modify picture to dL=100 Mpc

Radio Counterparts

