

Dawn of GW Astrophysics: Multi-messenger Astronomy Part 2

Neil Gehrels

NASA-GSFC

Dawn Conference

May 7, 2015

Binary NS Mergers – GW and GRB Sources

Two ways of EM observations of GW events

Counterpart identification between GW and EM can go both ways:

1) Detection of prompt GRB signal coincident with GW event

2) Multi-wavelength follow-up observations of GW events

Best instrument for prompt short GRBs is GBM

Meegan+ 09

- Views entire unocculted sky
- 350 GRBs per year
- High fraction of short GRBs
- Accurate time stamp

~25% short GRBs

EM afterglows are bright when on-axis

Kann+ '08

Gehrels, Ramirez-Ruiz & Fox '09

But, beaming angle is small

Short GRBs

- $-\theta_{\rm B} \sim 5 \text{ deg}$
- 1/250 in beam

Fong+ 12

and off-axis afterglows are weak

van Eerten, Zhang, MacFadyen '10

Kilonovas are isotropic, but weak

Swift GRB 130603B

Unusually Red Afterglow HST

kilonovae @ 200 Mpc J ~21

Berger+ '13, Tanvir+ '13, Fong+ '13

What we need are telescopes that are

- sensitive
- red or NIR response
- wide-field
- fast response

Or ...

CSI Enhanced Imaging

CSI Enhanced Imaging

GW event large error boxes

GW event large error boxes

GW event large error boxes

What we need is LIGO-India and Kagra.

Another approach – galaxy strategy

Another approach – galaxy strategy

CLU catalog Kasliwal

Gehrels, Kasliwal, Singer, Kanner, Nissanke, Cannizzo 2015

What we need: JWST & WFIRST

JWST

- 3" FoV
- $-0.6 27 \mu m$
- 2 day TOOs
- 29 mag
- high res spectroscopy

WFIRST

- 30" FoV
- $-0.6 2 \mu m$
- 2 hour TOOs (TBD)
- 27 mag
- R=100 spectroscopy

kilonovae @ 200 Mpc J ~23

Afterglows

WFI F_{lim}

- point sources
- -S/N=5
- 2ks

AB=27 in J band

Kann+ '08

What we need going wide: ZTF & Lobster

Explorer EX 2011

Explorer MOO ISS 2012

ZTF CCD Array

What we need: GRB trigger like SVOM

What we need: data & community

Rapid distribution of 3-D error regions

Galaxy catalog in the optical where wide-field imaging is available to eliminate false positives for prompt follow-up and working with localization volumes

Expanded open archive of GW and EM data. Possible new or existing facility to serve as the science data center to support the community.

Conclusions

- Bright EM counterparts are expected in rare GW events where merger axis is aimed toward us
- For off-axis mergers, the EM emission will be weak
- A galaxy strategy will allow sensitive narrow-field telescopes to participate
- The EM emission parameters (beaming, kilonova) are poorly known. Coincident detection with a GW event will great improve our knowledge of the explosion.

GW Rates from GRB Rates

Short GRB rate is ~ 10 Gpc⁻³ yr⁻¹ (300 short GRBs/yr to z=0.5)

If all short GRBs due to NS-NS mergers & beaming angle is 5 - 20 deg

 \Rightarrow NS-NS merger rate is 150 - 2500 Gpc⁻³ yr⁻¹

[Consistent with NS-NS population synthesis modeling by O'Shaughnessy, Kalogera, ...]

For ALIGO/Virgo NS-NS merger sensitivity distance is ~200 Mpc:

aLIGO detection rate is 3 - 50 yr⁻¹

(plus BH-BH and gamma-ray quiet mergers)

K. Thorne