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Advanced LIGO: Nominal

Focus on High Frequency Sources
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Sky localization of compact
binary systems:
Phys. Rev. D 91, 044032
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Strain [1/CHZ]

Quantum shot noise limits the
high frequency sensitivity

Advanced LIGO: Nominal
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Quantum shot noise limits the
high frequency sensitivity

Advanced LIGO: Nominal
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Strain [1/CHZ]
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RADIATION PRESSURE NOISE: o] SHOT NOISE: Photon counting noise due

Back-action noise caused by random | i -~ to fluctuations of the number of photon

motion of optics due to fluctuations AR .| detected at the interferometer output

of the number of impinging photons 1 —> Limitation of the precision to measure
- Additional displacement noise Frequency [|' arm displacement:




Options for reducing shot noise
beyond Advanced LIGO design

<>More laser power in the arms, in principle, BUT:

<-Already ~1 MW in the arm cavities at full power
<> Difficult to go beyond that, due to:

* thermal effects
e alignment stability
e parametric instability

=>» Very unlikely to be able to e
increase the power beyond Phys. Rev. Lett. 114, 161102
aLIGO design in the near term



Options for reducing shot noise
beyond Advanced LIGO design

<*Injection of squeezed light

<> Re-shape the interferometer optical response
=» sighal recycling detuning

=» change interferometer bandwidth



Injection of Squeezed Light

Two “flavors” of squeezing: —

{Frequency independent =1
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Strain [1/CHZ]

Frequency Independent Squeezing
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SHOT NOISE
gets better by
a factor of 2

Frequency [HZz]

=>» High frequency improvement, no benefit in BNS-BNS range 9



Frequency Independent Squeezing
as risk mitigation for high power operation
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Frequency [HZz]
aLIGO @ 4 times less power + squeezing = aLIGO nominal 10



Strain [1/CHZ]

Frequency Dependent Squeezing
(“short” filter caV|ty)

f §fffffffff%fffff?fffffff?ff?fffff?ffff —Quantum no|se ,
Wl |==Coating Brownian noise
"""""""""""""""""""""""" = = =Nominal aLIGO :
== Frequency Independent

—Total N0|se i

10" 10° 10°
Frequency [Hz]

=>» High frequency improvement, + 25% BNS-BNS range (200 vs 250 Mpc)
=>» Enables further improvement through coating thermal noise reduction
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Strain [1/CHzZ]

Frequency Dependent Squeezing
(“long” filter cavity)
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== Suspension thermal noise
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== Quantum noise (long filter cavity)

=== Total Noise short filter cavity

Frequency [Hz]
=>» More challenging than “short cavity”; particularly beneficial for targeting 5
low/mid frequency sources, especially when combined with other



Signal Recycling Detuning

| === Quantum noise B
| | === Coating Brownian noise ||
| ===Total noise

o = = = Frequency Dependent
| == Gravity Gradients

<> In principle, ability to
target high frequency
sources without
squeezing, by giving up
BNS range completely

<~ Challenge from the point
of view of interferometer
control

Strain [1/CHzZ]

<> Interferometer loss limits 10
how deep we can go

Frequency [HZz]

=» Signal recycling detuning not particular beneficial for high frequency sources

(compared to squeezing)

=>» Interesting cases for low-mid frequencies regions
13



Change of interferometer bandwidth

Strain [1/CHZ]
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Readiness level / cost for Squeezing

<> Frequency independent
v’ Already applied in large scale interferometers
Nature Physics 7, 962 (2011), Nature Photonics 7, 613-619 (2013)
v’ Conceptual design for application in Advanced LIGO:
Optics Express Vol. 22, Issue 17, pp. 21106-21121 (2014)
v’ Mature technology: system development phase

v’ High frequency improvement, risk mitigation for high
power operation in aLIGO

v’ Tentative cost estimate: S1IM per interferometer



Readiness level / cost for Squeezing

<> Frequency dependent (“short cavity”)

v' Recent demonstration with table top experiment (P1500062)

v' Mature technology: system development phase
v' +25% improvement in BNS-BNS range (~260 Mpc)

v’ Greater benefit when combined with reduced coating thermal noise
(see Stefan’s talk, and Phys. Rev. D 91, 062005)

v’ Tentative estimate: additional $S0.5M per interferometer

< Frequency dependent (“long cavity”)

v’ Particular beneficial for low frequency sources, when combined with
other noise improvements (see Rana’s talk)

v Technology development phase; more costly


https://dcc.ligo.org/LIGO-P1500062

Summary of Squeezing Options

Benefit & Cost Readiness

G | e Quantum noise
-1 | === Coating Brownian noise
(i | e Total noise
i i1 | ===Nominal aLIGO

il | == Quantum noise
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Dependent at HF, preserve development
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Conclusions

<> Getting a factor of 2 improvement at high frequency
is within reach

<> More than a factor of 2 is harder, but doable

<>What we do at high frequency does impact the low-
mid frequency region

<> Benefit in terms of BNS range is “only” +25%, but
that’s true with any single improvement we do
=>» need to attack multiple noise sources at the same
time
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Frequency Dependent Squeezing - |
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Noise relative to coherent vacuum [dB]
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Frequency dependent squeezing
with a 2 m filter cavity @ MIT

- Paper circulated to the LSC: P1500062
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https://dcc.ligo.org/LIGO-P1500062

Long vs Short filter cavity
(Nothing comes cheap)

<>Advanced LIGO needs a a filter cavity with 50 Hz bandwidth
<> Losses in a filter cavity deteriorate, if too high, make the filter
cavity useless...

4e c Tc
Total Loss E=— = , Giner =
T gﬁlter 4L
Mirrors causing losses —)-[E: ﬂ
Per-round-trip loss depends on
the beam spot size get good polish
(big beam size = higher scatter / .
I : Scattering + Absorption ‘
osses), which depends on L < 1ppm/m

Cavity length

scattering
increases

\ increase
beam size | == cavity length

increases




Balanced Homodyne Detection

Simplified
Interferometer
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Optics Express Vol. 22, Issue 4, pp. 4224-4234 (2014)

<-Standard technique in table
top squeezing experiments

<> It has advantages compared
to DC readout when applied
to large scale interferometers

<>Main advantage: remove
static carrier field at the anti-
symmetric port
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Balanced Homodyne Detection

L1 current high frequency noise budget
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Strain [1/CHZz]

Signal Recycling Detuning with
frequency inde

nendent squeezing

| === Quantum noise
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Signal Recycling Detuning with
frequency independent squeezing, low loss

| === Quantum noise

""""" S| e SeiSMIC NOISE
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B B N Substrate Brownian noise
G G Excess Gas
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Quantum Noise and Vacuum

X1

IFO Signal

Amplituae

<>

Quantization of the electro-magnetic field

When average amplitude is zero, the
variance remains

Heisenberg uncertainty principle:
AX; AX, 21

Vacuum fluctuations are everywhere that
classically there is no field....

...like at the output port of your
Interferometer!

Quantum noise is produced by vacuum
fluctuations entering the open ports

Vacuum fluctuations have equal
uncertainty in phase and amplitude:
¢ Phase: Shot-Noise
(photon counting noise)
+* Amplitude: Radiation Pressure Noise
(back-action)




Vacuum Getting Squeezed
E_ 3

N0 00000

1\

Phase ¢

T

Signal.

Ampﬁude

<> Reduce quantum noise by injecting
squeezed vacuum: less uncertainty in one
of the two quadratures

<> Heisenberg uncertainty principle:
if the noise gets smaller in one
guadrature, it gets bigger in the other one

<> One can choose the relative orientation
between the squeezed vacuum and the
interferometer signal (squeeze angle)

C. M. Caves, Phys. Rev. Lett. 45, 75 (1980).
C. M. Caves, Quantum-mechanical noise in an
interferometer. Phys. Rev. D 23, p. 1693 (1981).




How to make squeezed fields..

.... in theory

<> Non linear medium with a strong second order
polarization component
<> Correlation of upper and lower quantum sidebands

Correlated
Seed g . _‘
—0 2 P> Signal 0+Q .
0+Q * ldler 0-Q Pump sucaliis

- 20
Pump ldler o-Q
20

Atomic Polarizatione&aDielectric Medium
P = gy e +..)
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[ 1 ]

w-Q w w+Q

The OPO makes a “copy” of
the gquantum sideband, and
it correlates the sidebands



How to make squeezed fields..

. . World-wide effort in the last 10 years to make
.... In practice squeezing in the audio-frequency band

<> Lasers, mirrors, control Ioops

/ Courtesy of Alexander Khalaldovskl (AEI)
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The Squeezer of the GEO600 detector
The Optical Parametric

Oscillator
of the LIGO squeezer
(ANU design)




