Discussion Questions

- How many detections before we pick a direction?
- downtime for improvements
 - can we take the detectors down for 6 months to make upgrades? (after detection!)
 - post detection time-volume calculus?
- what is the impact of duty cycle, lock length?
 work on seismic system...

Discussion Questions

- how fast can we make progress on coating thermal noise?
 - funding limited?
 - manpower limited?
- bigger mirrors, bigger beams

 alignment trouble, bigger BS PR3 SR3?
- cool to 200K for modest CTN improvement?
- more squeezing?
 - I/O loss reduction, readout noise, squeezer limit
- squeeze tracking?

Extra Slides

Frequency Dependent Squeezing - I

High finesse detuned **"filter** cavity" which rotates the squeezing angle as function of frequency ⁴

Frequency dependent squeezing with a 2 m filter cavity @ MIT

Long vs Short filter cavity (Nothing comes cheap)

♦ Advanced LIGO needs a a filter cavity with 50 Hz bandwidth
 ♦ Losses in a filter cavity deteriorate, if too high, make the filter cavity useless...

Balanced Homodyne Detection

Optics Express Vol. 22, Issue 4, pp. 4224-4234 (2014)

- Standard technique in table top squeezing experiments
- ♦ It has advantages compared to DC readout when applied to large scale interferometers
- ♦ Main advantage: remove static carrier field at the antisymmetric port

Balanced Homodyne Detection

L1 current high frequency noise budget

Frequency, Hz

8

Signal Recycling Detuning with frequency independent squeezing

Signal Recycling Detuning with frequency independent squeezing, low loss

Quantum noise shaped by squeezed angle

Quantum Noise and Vacuum

- ♦ Quantization of the electro-magnetic field
- When average amplitude is zero, the variance remains
- ♦ Heisenberg uncertainty principle:

$$\Delta X_1 \Delta X_2 \ge 1$$

- Vacuum fluctuations are everywhere that classically there is no field....
- …like at the output port of your interferometer!
- Quantum noise is produced by vacuum fluctuations entering the open ports
- Vacuum fluctuations have equal uncertainty in phase and amplitude:
 - Phase: Shot-Noise (photon counting noise)
 - Amplitude: Radiation Pressure Noise (back-action)

Vacuum Getting Squeezed

- Reduce quantum noise by injecting squeezed vacuum: less uncertainty in one of the two quadratures
- Heisenberg uncertainty principle:
 if the noise gets smaller in one
 quadrature, it gets bigger in the other one
- One can choose the relative orientation between the squeezed vacuum and the interferometer signal (squeeze angle)

C. M. Caves, Phys. Rev. Lett. 45, 75 (1980).C. M. Caves, Quantum-mechanical noise in an interferometer. Phys. Rev. D 23, p. 1693 (1981).

How to make squeezed fields..

.... in theory

- Non linear medium with a strong second order polarization component
- \diamond Correlation of upper and lower quantum sidebands

The OPO makes a "copy" of the quantum sideband, and it correlates the sidebands

How to make squeezed fields..

.... in practice

World-wide effort in the last 10 years to make squeezing in the audio-frequency band

 \diamond Lasers, mirrors, control loops,..

The Squeezer of the GEO600 detector

The Optical Parametric Oscillator of the LIGO squeezer (ANU design)

LIGO

Improving Coating Brownian Noise - 4

- Other geometries:
 - Laguerre-Gaussian beams
 - Larger averaging area for same Gaussian beam size
 - (Phys. Rev. Lett. 105, 231102)
 - But difficult to maintain good contrast defect (degeneracy)
 - (Phys. Rev. D 84, 102001)
 - Folded arm cavities
 - Ampl TN improvement of x 0.5 possible
 - (Phys. Rev. D 88, 062004)
 - Requires significant suspension and optics changes

LIGO aLIGO Risk mitigation?

- What is the actual thermal noise?
 - No direct TN measurement of LIGO optics yet
 - Best measurement so far: *Metrologia* **52** 17 (2015) - But different type of coating
- Reducing Coating Thermal noise could become top priority...