

Prospects for Low Frequency Enhancements

Rana Adhikari

for the Advanced Interferometer Configurations WG

Synopsis

- Impact on Astrophysics
- Summary of Noise sources
- Noise Mitigation Strategies
- Budget / Schedule
 estimates

Impact on Detection Rates

LIGO Voyager Science Case: https://dcc.ligo.org/LIGO-T1200099 Einstein Telescope Science Case: http://arxiv.org/abs/1206.0331

Impact on Localization

1. Low frequency improvement leads to more low f SNR

LIGO Voyager Science Case: https://dcc.ligo.org/LIGO-T1200099 Einstein Telescope Science Case: http://arxiv.org/abs/1206.0331

Low Frequency Noise Budget

- Noise source
 population grows
 at low frequency
- Mix of
 'fundamental' and
 technical limits.
- All can be
 surpassed; costs,
 tradeoffs

Low Frequency Noise Budget

"Ignore" some noise sources

- Local Damping noise is nearly
 limiting, but can 'easily' be reduced
 by better filtering.
- Input Beam Jitter can be actively suppressed (UF - design)
- Squeezed film damping can be mitigated through increasing the gap sizes and reshaping the reaction mass.
- We have plans to reduce the Aux.
 controls noise in a few ways.
- **Charging:** larger gaps, discharging, and (future) conductive coatings.

Low Frequency Noise Budget

Newtonian Gravity:

- Accelerometer array (~10-20 per test mass)
 - Offline signal subtraction (Driggers et al., PRD 2012)
- has been demonstrated for seismic / acoustic signals (cf. Driggers, Klimenko)
- Tradeoffs:
 - * ~\$1500 / sensor
 - 10x subtraction feasible
 - More subtraction is not cost effective (units of Mpc / \$)

All the changes together:

AGDM		GWINC (low NN)	aLIGO	10x NN	+SUS m=40kg	A11 50 W	All 125 W
	BNS Range	203	197	211	212	218	249
	30/30 Range	1957	1777	2147	2187	3400	3195
	dBNS	+3%	0	+7%	+7%	+13%	+22%
	dBBH	+9%	0	+21%	+23%	+30%	+63%

Costs, Schedule, etc.

- Newtonian Gravity array: ~150k\$, 4 months prep, 1 months install, 3-6 months shakedown
- Suspension Upgrades: Giles, Sheila, Norna
- Heavier Test mass: Sheila
 - Scattered Light: Baffling