

Dawn of GW Astrophysics: Multi-messenger Astronomy

Jonah Kanner LIGO Lab - Caltech

LIGO-G1500579-v6

First 5 years: 2018-2023

- LIGO + Virgo + Kagra + LIGO India
- 3, 4, or 5 detector network!
 - BNS Range to ~200 Mpc
 - Several to 10's of detections per year
 - Localizations of 10's to 100's of sq. deg.
 - or better!
 - Red-shiftmeasurements forCBC sources

What is the origin of heavy elements?

- Abundances of heavy elements (A > 90) not described by stellar processes or SN
- NS-NS / BH-NS merger seem good candidates observable as kilonova (~week long EM transient)

The RELATIVE abundances predicted from NS-NS mergers fits the observed distribution...

But the RATE of production is uncertain by 3 orders of magnitude!

Quantify rate of heavy element production

Uncertainties in model include:

- Rate of compact object mergers
 - Measured population of LIGO events
- Amount of ejecta from each merger
 - Probed by luminosity and time-scale of Kilonova
- BH-NS, NS-NS, or both ?
 - Measured by GW parameter estimation

Kilonova + GW observations will provide a strong test of this model

Coincident GRBs

- ~2% of NS-NS mergers will have coincident GRB
 - Could see one or a few in the first few years
 - Never measured a GRB red-shift within LIGO/Virgo horizon
- Making this connection will probe many science questions
 - Sources of short GRBs
 - Beaming angles
 - Source population
 - Relationship to host galaxy
 - Mass distribution
 - NS-NS or BH-NS
 - Clues to jet structure / formation

Image credit: NASA / Swift / Cruz deWilde.

 Timing between GW and GRB will give clues to source physics, maybe equation of state

Neutron Star Equation of State

- High SNR mergers are key
- Many possible ways to probe this:
 - Tidal deformation perturbs GW phase
 - Remnant NS post-merger signal peak frequency
 - Amount of mass ejected in Kilonova
 - Measure ejected mass through luminosity/timing
 - Relative timing of GW and GRB signal (?)
 - Existence of GRBs for NS-BH systems

May 7, 2015 Silver Spring, MD

Enabling the Science

GRB all-sky coverage: CubeSats

- Current GRB observatories (Fermi, Swift) may not last through this era
- Space agencies will probably continue observing GRBs
 - Many proposed missions
 - SVOM scheduled for 2021
- CubeSats could fill a potential gap
 - All-sky GRB monitoring ... in a box!
 - Low cost point
- Proposal in progress from Goddard
 - PI: Jeremy Perkins

Data Mining and Follow-up for big surveys

- Finding a kilonova demands survey in the red or infrared
- Modern/Future surveys should be capable
 - Pan-STARRS, ZTF, DES, LSST ...
- Data rates will be ... big
 - 20 TB per night (LSST)
 - 400 GB per night (DES)
- False positives will be a major issue

- May be an opportunity to provide specialized computing hardware/software for GW counterparts
- May need resources for kilonova candidate validation and photometric follow-up
 - People, telescopes, and/or computers may all be needed
 - Build/re-purpose a dedicated, ~2 m follow-up instrument?

Collect / Curate / Validate Galaxy Catalog

- Some facilities may depend on a galaxy catalog to find LIGO counterparts
 - Swift, JWST (?), ...
- A validated, public catalog enables:
 - Enhanced LIGO data products
 - Small FOV instruments to seek candidates
 - A range of studies
- Work on this already in progress (e.g. Kasliwal), but extra resources needed to collect, validate, and curate a catalog

More Events -> More science

- EM counterpart rate will be a fraction of LIGO BNS rate
 - Coincident GRBs will be ~2% of LIGO BNS rate
 - As a guess, observed Kilonovae will be ~10% of LIGO BNS
- Small number of observed EM counterparts:

< 10 per year

- 30% gain in LIGO BNS range would double this!
 - A small change in LIGO sensitivity makes a big difference
- Probably means improving low frequency (20-300 Hz) sensitivity
 - FOM: BNS Range

Match GW sensitivity across network

- Search area very sensitive to number of equally sensitive detectors in network
 - 2 IFO -> ~400 sq deg
 - -3 IFO -> ~100 sq deg
 - $-4 \text{ IFO} \rightarrow 10 \text{ sq deg}$
- Improving poorest performing detector may be best "bang-for-buck" for multi-messenger astronomy if detections are common-place
 - If detections are very few, may be better to improve
 2 most sensitive detectors to improve rates

SNR at the merger

- High SNR events help with big questions
 - NS equation of state, parameter estimation, tests of GR
 - Small gains in sensitivity could make a big impact
 - SNR 20 is a lot better than SNR 12
- Lots of interesting science at moment of merger
 - Tidal stretching, NS resonant frequencies, extreme gravity
 - Key for position reconstruction
- Points to improvements at LIGO high frequency
 - 1-3 kHz range
 - May also be a key range for galactic events, if we find them!

Summary

- Improving the GW network benefits multimessenger astronomy
 - Improve BNS range for more sources
 - Match sensitivity across network for localization
 - Improve high freq. noise for more SNR at merger
- Could try to patch "holes" in EM landscape
 - CubeSats to monitor for GRBs
 - Follow-up / Data Mining for large NIR surveys
 - Validate / Curate galaxy catalog

Thank you!

Extra slides

The follow-up bottleneck

70 sq deg survery: 27,000 variable objects

Pass automated cuts: 43 Candidates

"Inspection" by graduate student: 7 candidates

"Narrow Field" follow-up:

1 Counterpart + light curve +
photometry

Host Galaxies

Imagine we find some EM+GW signals:

- Can localize sources in host galaxy:
 - What types of galaxies host mergers?
 Does this depend on mass/spin parameters?
 - Tells if binaries trace star formation
 - Is the merger in an area of active star formation?
 - What type of host galaxy?
 - Distinguish NS-NS and NS-BH, which we can't for SGRBs
 - Is the merger well outside the galaxy?
 - Probes time until merger
 - Constrain population synthesis
 - Learn about strengths of kicks from SN probes SN physics

Fong, Berger, & Fox 2010

Possible Surprise: Galactic Sources?

- All EM bands are dominated by galactic sources
 - Maybe GW will be too?
- Pulsars, R-modes, neutron star hyper flares ...
- Much of this would be at high frequencies
 - NS resonant frequencies around ~1-3 kHz
 - Supernovae have GW content up to ~3kHz

Radio Pulses / FRBs?

- A variety of models suggest radio emission from NS-NS mergers
- There may be a coherent pulse near the time of merger
 - May be a fraction of Fast Radio Bursts ("Lorimer" Bursts)
- Wide field radio arrays may find these in coincidence with GW signal
 - Help understand "coherent" emission
 - Exciting new field of wide field radio astronomy
 - Early sky position may help!

Model based on NS-NS ejecta (solid)

Measured Solar system abundance (dots)

Overall scale of model is normalized to fit observations

The Loudest GW Event

- ~40 events at SNR 8 (250 Mpc)
 - \rightarrow 1 event at SNR 27 (70 Mpc)
- Easy to find counterpart
 - Few possible hosts
 - Bright! Long lived!
- High SNR signal gives many details
 - Better estimate of masses, spins, etc
 - Measure NS Equation of State!
 - Test General Relativity!
 - High resolution image of host galaxy

Some other possible astrophysics targets

- Supernovae,
- Neutrino alerts,
- IMBH,
- measuring the Hubble parameter,
- Dark Matter halos,
- SGRs
- Etc ...